Wordprocessing

A variational approach to parameter estimation in ordinary differential equations

Abstract:

ABSTRACT: BACKGROUND: Ordinary differential equations are widely-used in the field of systems biology andchemical engineering to model chemical reaction networks. Numerous techniques havebeen developed to estimate parameters like rate constants, initial conditions or steady stateconcentrations from time-resolved data. In contrast to this countable set of parameters, theestimation of entire courses of network components corresponds to an innumerable set ofparameters. RESULTS: The approach presented in this work is able to deal with course estimation for extrinsicsystem inputs or intrinsic reactants, both not being constrained by the reaction networkitself. Our method is based on variational calculus which is carried out analytically toderive an augmented system of differential equations including the unconstrainedcomponents as ordinary state variables. Finally, conventional parameter estimation isapplied to the augmented system resulting in a combined estimation of courses andparameters. CONCLUSIONS: The combined estimation approach takes the uncertainty in input courses correctly intoaccount. This leads to precise parameter estimates and correct confidence intervals. Inparticular this implies that small motifs of large reaction networks can be analysedindependently of the rest. By the use of variational methods, elements from control theoryand statistics are combined allowing for future transfer of methods between the two fields.

22892133

Projects: A2: Integration of Signalling Pathways in Hepatocellular Response

BMC Syst Biol
BMC Syst Biol 6: 99
14th Aug 2012

Daniel Kaschek, Jens Timmer

help Authors

[Daniel Kaschek] [Jens Timmer]

help Attributions

None

help Scales


Cell
Views: 1709
  • Created: 29th Oct 2012 at 10:50
  • Last updated: 24th Oct 2013 at 16:16

Related items

Ajax-loader-large

Log in / Register

Need an account?
Sign up

Forgotten password?

Front Page

Virtual Liver Network

(v.0.22.0)

Related Projects and friends


Imprint Taverna workflow workbench myExperiment JWS Online ISATAB myGrid Sabio-RK BioPortal Semantic SBML

Powered by:

Ror-logo-32

Icons:
Silk icons 1.3
Crystal Clear icons