Abstract:
Apoptosis is regulated by several signaling pathways which are extensively linked by crosstalks. Boolean or logical modeling has become a promising approach to capture the qualitative behavior of such complex networks. Here we built a large-scale literature-based Boolean model of the central intrinsic and extrinsic apoptosis pathways as well as pathways connected with them. The model responds to several external stimuli such as Fas ligand, TNF-alpha, UV-B irradiation, interleukin-1beta and insulin. Timescales and multi-value node logic were used and turned out to be indispensable to reproduce the behavior of the apoptotic network. The coherence of the model was experimentally validated. Thereby an UV-B dose-effect is shown for the first time in mouse hepatocytes. Analysis of the model revealed a tight regulation emerging from high connectivity and spanning crosstalks and a particular importance of feedback loops. An unexpected feedback from Smac release to RIP could further increase complex II formation. The introduced Boolean model provides a comprehensive and coherent description of the apoptosis network behavior. It gives new insights into the complex interplay of pro- and antiapoptotic factors and can be easily expanded to other signaling pathways.
Projects: No Projects
PLoS Comput. Biol.
PLoS Comput. Biol. 5(12): e1000595
2nd Jul 2009
Rebekka Schlatter, Kathrin Schmich, Ima Avalos Vizcarra, Peter Scheurich, Thomas Sauter, Christoph Borner, Michael Ederer, Irmgard Merfort, Oliver Sawodny
Authors
Attributions
None
Scales
Not Specified
- Created: 3rd Dec 2010 at 09:59
- Last updated: 24th Oct 2013 at 16:21
Related items
